Tuesday, 17 October 2017

Rapporto Mobile Media Formula


Le medie mobili: cosa sono tra i più popolari indicatori tecnici, medie mobili vengono utilizzati per misurare la direzione del trend corrente. Ogni tipo di media mobile (comunemente scritto in questo tutorial come MA) è un risultato matematico che viene calcolato facendo la media di un certo numero di punti dati del passato. Una volta determinato, la media risultante viene quindi tracciata su un grafico in modo da consentire agli operatori di guardare i dati smussati piuttosto che concentrarsi sulle fluttuazioni di prezzo giorno per giorno che sono insiti in tutti i mercati finanziari. La forma più semplice di una media mobile, opportunamente noto come media mobile semplice (SMA), è calcolato prendendo la media aritmetica di un dato insieme di valori. Ad esempio, per calcolare una media mobile di 10 giorni di base si sommano i prezzi di chiusura degli ultimi 10 giorni e poi dividere il risultato per 10. Nella figura 1, la somma dei prezzi negli ultimi 10 giorni (110) è diviso per il numero di giorni (10) per arrivare alla media a 10 giorni. Se un operatore desidera vedere una media di 50 giorni, invece, lo stesso tipo di calcolo sarebbe fatto, ma includerebbe i prezzi negli ultimi 50 giorni. La media risultante di seguito (11) tiene conto degli ultimi 10 punti di dati al fine di dare ai commercianti un'idea di come un bene ha un prezzo relativamente agli ultimi 10 giorni. Forse vi state chiedendo il motivo per cui gli operatori tecnici chiamano questo strumento un movimento solo un mezzo normale media e non. La risposta è che, come nuovi valori diventano disponibili, i punti di dati più vecchi devono essere eliminati dal set e nuovi punti di dati deve venire a sostituirli. Così, il set di dati è in continuo movimento per tenere conto di nuovi dati non appena disponibili. Questo metodo di calcolo assicura che solo le informazioni correnti viene contabilizzato. In figura 2, una volta che il nuovo valore di 5 viene aggiunto al set, la scatola rossa (che rappresenta gli ultimi 10 punti dati) si sposta verso destra e l'ultimo valore di 15 è scesa dal calcolo. Dato che il relativamente piccolo valore di 5 sostituisce il valore massimo di 15, ci si aspetterebbe di vedere la media della diminuzione insieme di dati, cosa che fa, in questo caso da 11 a 10. Che Do medie mobili assomigliare Una volta che i valori della MA sono stati calcolati, essi vengono tracciati su un grafico e collegate per creare una linea di media mobile. Queste linee curve sono comuni nelle classifiche di operatori tecnici, ma come vengono utilizzati può variare drasticamente (più in seguito). Come si può vedere nella figura 3, è possibile aggiungere più di una media mobile su qualsiasi tabella regolando il numero di periodi di tempo utilizzati nel calcolo. Queste linee curve possono sembrare distrazione o confusione in un primo momento, ma youll abituarsi a loro col passare del tempo. La linea rossa è semplicemente il prezzo medio degli ultimi 50 giorni, mentre la linea blu è il prezzo medio degli ultimi 100 giorni. Ora che avete capito ciò che una media mobile è e quello che sembra, e introduce un diverso tipo di media mobile e di esaminare come si differenzia dal già citato media mobile semplice. La media mobile semplice è estremamente popolare tra i professionisti, ma come tutti gli indicatori tecnici, ha i suoi critici. Molte persone sostengono che l'utilità della SMA è limitata perché ogni punto della serie di dati è ponderata la stessa, indipendentemente da dove si verifica nella sequenza. I critici sostengono che i dati più recenti è più significativo rispetto ai dati meno recenti e dovrebbe avere una maggiore influenza sul risultato finale. In risposta a queste critiche, i commercianti hanno iniziato a dare più peso ai dati recenti, che da allora ha portato all'invenzione di vari tipi di nuovi media, la più famosa delle quali è la media mobile esponenziale (EMA). (Per approfondimenti, consultare Nozioni di base di medie mobili calibrati e cosa è la differenza tra un SMA e un EMA) media mobile esponenziale La media mobile esponenziale è un tipo di media mobile che dà più peso ai prezzi recenti, nel tentativo di renderlo più reattivo alle nuove informazioni. Imparare l'equazione un po 'complicato per il calcolo di un EMA può essere inutile per molti commercianti, dal momento che quasi tutti i pacchetti grafici fanno i calcoli per voi. Tuttavia, per voi la matematica geek là fuori, qui è l'equazione EMA: Quando si utilizza la formula per calcolare il primo punto della EMA, si può notare che non vi è alcun valore disponibile da utilizzare come EMA precedente. Questo piccolo problema può essere risolto avviando il calcolo con una media mobile semplice e continuando con la formula di cui sopra da lì. Vi abbiamo fornito con un foglio di calcolo di esempio che include esempi reali di come calcolare sia una semplice media mobile e una media mobile esponenziale. La differenza tra l'EMA e SMA Ora che avete una migliore comprensione di come il SMA e l'EMA sono calcolati, consente di dare un'occhiata a come queste medie differiscono. Osservando il calcolo della EMA, si noterà che maggiormente l'accento è posto sui recenti punti di dati, il che rende un tipo di media ponderata. In figura 5, il numero di periodi di tempo utilizzati in ogni media è identico (15), ma l'EMA risponde più velocemente alle variazioni dei prezzi. Si noti come l'EMA ha un valore più alto quando il prezzo è in aumento, e cade più veloce della SMA quando il prezzo è in declino. Questa risposta è la ragione principale per cui molti operatori preferiscono utilizzare l'EMA sopra la SMA. Cosa significano i diversi medie mobili giorni medi sono un indicatore del tutto personalizzabile, il che significa che l'utente può scegliere liberamente qualunque arco di tempo che vogliono durante la creazione del media. I periodi più comuni utilizzati in medie mobili sono 15, 20, 30, 50, 100 e 200 giorni. Più breve è l'intervallo di tempo utilizzato per creare la media, più sensibile sarà alle variazioni di prezzo. Più lungo è il periodo di tempo, meno sensibili, o più levigata fuori, la media sarà. Non vi è alcun periodo di tempo giusto da utilizzare durante la configurazione degli medie mobili. Il modo migliore per capire quale funziona meglio per voi è quello di sperimentare un certo numero di diversi periodi di tempo fino a trovare quello che misura il vostro strategy. OANDA 1080108910871086108311001079109110771090 10921072108110831099 biscotto, 10951090108610731099 1089107610771083107210901100 1085107210961080 10891072108110901099 10871088108610891090109910841080 1074 1080108910871086108311001079108610741072108510801080 1080 108510721089109010881086108010901100 10801093 10891086107510831072108910851086 108710861090108810771073108510861089109011031084 10851072109610801093 10871086108910771090108010901077108310771081 . 10601072108110831099 biscotto 10851077 10841086107510911090 1073109910901100 108010891087108610831100107910861074107210851099 107610831103 109110891090107210851086107410831077108510801103 10741072109610771081 10831080109510851086108910901080. 1055108610891077109710721103 108510721096 1089107210811090, 10741099 108910861075108310721096107210771090107710891100 1089 10801089108710861083110010791086107410721085108010771084 OANDA8217 109210721081108310861074 biscotto 1074 108910861086109010741077109010891090107410801080 1089 10851072109610771081 105510861083108010901080108210861081 108210861085109210801076107710851094108010721083110010851086108910901080. 1048108510891090108810911082109410801080 10871086 107310831086108210801088108610741072108510801102 1080 10911076107210831077108510801102 109210721081108310861074 biscotto, 1072 10901072108210781077 1091108710881072107410831077108510801102 108010841080 108710881080107410771076107710851099 10851072 10891072108110901077 aboutcookies. org. 1042 108910831091109510721077 10861075108810721085108010951077108510801103 1080108910871086108311001079108610741072108510801103 109210721081108310861074 biscotto 108610871088107710761077108310771085108510991077 1092109110851082109410801080 108510721096107710751086 10891072108110901072 10731091107610911090 1085107710761086108910901091108710851099. 104710721075108810911079108010901100 108410861073108010831100108510991077 1087108810801083108610781077108510801103 1042109310861076 1042109910731088107210901100 1089109510771090 1042107910741077109610771085108510861077 1089108210861083110010791103109710771077 1089108810771076108510771077 (WMA) 10541087108010891072108510801077 WMA 10861079108510721095107210771090 1711074107910741077109610771085108510861077 1089108210861083110010791103109710771077 1089108810771076108510771077187 (1072108510751083. 171weighted average187 in movimento). 10551086108410861075107210771090 10891075108310721076108010901100 108210881080107410911102 1094107710851099, 10951090108610731099 10831091109510961077 1080107610771085109010801092108010941080108810861074107210901100 10901088107710851076. WMA 107610771083107210771090 107710971077 1073108610831100109610801081 1091108710861088 10851072 1085107710761072107410851086 1087108610831091109510771085108510991077 107610721085108510991077, 109.510.771.084 EMA. 1060108610881084109110831072 1042107910741077109610771085108510861077 1089108210861083110010791103109710771077 1089108810771076108510771077 10741099109510801089108311031077109010891103 10871091109010771084 109110841085108610781077108510801103 1082107210781076108610751086 10791085107210951077108510801103 1074 108710861089108310771076108610741072109010771083110010851086108910901080 10851072 108810721079108510991081 10821086110110921092108010941080107710851090 1080 10891083108610781077108510801103 1087108610831091109510771085108510991093 10881077107910911083110010901072109010861074. 1042 10891074110310791080 10891086 1089108310861078108510861089109011001102 1074109910951080108910831077108510801103 1076107210851085108610751086 10891082108610831100107911031097107710751086 10891088107710761085107710751086 1085108010781077 10871088108010741077107610771085 108710881080108410771088. 10551088107710761087108610831086107810801084, 109510901086 1094107710851099 10791072108210881099109010801103 10791072 108710861089108310771076108510801077 5 1076108510771081 108910831077107610911102109710801077: 1044107710851100 1060108610881084109110831072 108210861101109210921080109410801077108510901072, 108710881080108410771085110310771084108610751086 1082 108210721078107610861081 10801079 109410771085, 108910831077107610911102109710721103: lt n. 1095108010891083108010901077108310771084 1074 108210721078107610861084 108910831091109510721077 11031074108311031077109010891103 10951080108910831086, 108610731086107910851072109510721102109710771077 10851086108410771088 107610851103 1074 108710861089108310771076108610741072109010771083110010851086108910901080. lt d. 107910851072108410771085107210901077108310771084 11031074108311031077109010891103 10891091108410841072 1082108610831080109510771089109010741072 1076108510771081 1074 1074108010761077 109010881077109110751086108311001085108610751086 10951080108910831072. 105810721082 108210721082 10861073109710771077 1082108610831080109510771089109010741086 1076108510771081 10881072107410851086 5, 109010881077109110751086108311001085109910841080 1095108010891083107210841080 11031074108311031102109010891103 5, 4, 3, 2 1080 1, 1072 10801093 10891091108410841072 10881072107410851072 5432115. 1055108611011090108610841091 5-1076108510771074108510861077 WMA 10881072108910891095108010901099107410721077109010891103 108210721082 83 (515) 81 ( 415) 79 (315) 79 (215) 77 (115) 80,7 1044107710851100 1042 107610721085108510861081 10871088107710791077108510901072109410801080 108710881077107610861089109010721074108311031077109010891103 109010861083110010821086 10861073109710721103 1080108510921086108810841072109410801103. 1055108810801084107710881099 1087108810801074108610761103109010891103 1080108910821083110210951080109010771083110010851086 1074 10801083108311021089109010881072109010801074108510991093 10941077108311031093 1080 10841086107510911090 10851077 10861090108810721078107210901100 1090107710821091109710801077 1094107710851099 OANDA. 105410851080 10851077 11031074108311031102109010891103 10801085107410771089109010801094108010861085108510861081 1088107710821086108410771085107610721094108010771081 108010831080 10871086107310911078107610771085108010771084 1082 1089108610741077108810961077108510801102 108910761077108310821080. 1056107710791091108311001090107210901099, 10761086108910901080107510851091109010991077 1074 1087108810861096108310861084, 1085107710861073110310791072109010771083110010851086 109110821072107910991074107211021090 10851072 1088107710791091108311001090107210901099 1074 1073109110761091109710771084. 169 199682112017 OANDA Corporation. 104210891077 10871088107210741072 10791072109710801097107710851099. 10581086107410721088108510991077 10791085107210821080 OANDA, fxTrade 1080 108910771084107710811089109010741086 10901086107410721088108510991093 107910851072108210861074 fx 10871088108010851072107610831077107810721090 OANDA Corporation. 104210891077 108710881086109510801077 10901086107410721088108510991077 10791085107210821080, 10871088107710761089109010721074108310771085108510991077 10851072 1101109010861084 10891072108110901077, 11031074108311031102109010891103 10891086107310891090107410771085108510861089109011001102 108910861086109010741077109010891090107410911102109710801093 1074108310721076107710831100109410771074. 10581086108810751086107410831103 10821086108510901088107210821090107210841080 10851072 10801085108610891090108810721085108510911102 107410721083110210901091 108010831080 10801085109910841080 107410851077107310801088107810771074109910841080 1087108810861076109110821090107210841080 1089 10801089108710861083110010791086107410721085108010771084 10841072108810781080 1080 1082108810771076108010901085108610751086 10871083107710951072 107410831077109510771090 1074109910891086108210801077 10881080108910821080 1080 10871086107610931086107610801090 10851077 1074108910771084 1080108510741077108910901086108810721084. 10561077108210861084107710851076109110771084 107410721084 109010971072109010771083110010851086 1086109410771085108010901100, 10871086107610931086107611031090 10831080 107410721084 10901072108210801077 10901086108810751086107410991077 10861087107710881072109410801080 1089 109110951077109010861084 10741072109610801093 108310801095108510991093 1086107310891090108611031090107710831100108910901074. 1042107210961080 109110731099109010821080 10841086107510911090 108710881077107410991089108010901100 10861073109810771084 10741072109610801093 1080108510741077108910901080109410801081. 1048108510921086108810841072109410801103, 10871088108010741077107610771085108510721103 10851072 107610721085108510861084 10891072108110901077, 10851086108910801090 10861073109710801081 10931072108810721082109010771088. 10561077108210861084107710851076109110771084 107410721084 10761086 108510721095107210831072 10901086108810751086107410831080 1086107310881072109010801090110010891103 10791072 1087108610841086109711001102 1082 10851077107910721074108010891080108410991084 1082108610851089109110831100109010721085109010721084 1080 109110731077107610801090110010891103, 109510901086 10741099 108710861083108510861089109011001102 108710861085108010841072107710901077 107410891077 1089108610871091109010891090107410911102109710801077 10881080108910821080. 10581086108810751086107410831103 10871086108910881077107610891090107410861084 108610851083107210811085 -108710831072109010921086108810841099 107410831077109510771090 10761086108710861083108510801090107710831100108510991077 10881080108910821080. 10571084. 108810721079107610771083 17110551088107210741086107410991077 1074108610871088108610891099187 10791076107710891100. 1060108010851072108510891086107410991081 10891087108810771076-1073107710901090108010851075 10761086108910901091108710771085 109010861083110010821086 10821083108010771085109010721084 OANDA Europe Ltd, 1103107410831103110210971080108410891103 10881077107910801076107710851090107210841080 105710861077107610801085107710851085108610751086 10501086108810861083107710741089109010741072 108010831080 1056107710891087109110731083108010821080 10481088108310721085107610801103. 105010861085109010881072108210901099 10851072 1088107210791085108010941091, 1092109110851082109410801080 109310771076107810801088108610741072108510801103 105210584 1080 108210881077107610801090108510861077 10871083107710951086 10891074109910961077 50: 1 1085107710761086108910901091108710851099 107610831103 1088107710791080107610771085109010861074 10571086107710761080108510771085108510991093 106410901072109010861074 1040108410771088108010821080. 1048108510921086108810841072109410801103 10851072 1101109010861084 10891072108110901077 10851077 1087108810771076108510721079108510721095107710851072 107610831103 1078108010901077108310771081 10891090108810721085, 1074 1082108610901086108810991093 10771077 108810721089108710881086108910901088107210851077108510801077 108010831080 1080108910871086108311001079108610741072108510801077 10831102107310991084 10831080109410861084 108710881086109010801074108610881077109510801090 1084107710891090108510991084 1079107210821086108510721084 1080 10871088107210741080108310721084. 10501086108410871072108510801103 1089 108610751088107210851080109510771085108510861081 1086109010741077109010891090107410771085108510861089109011001102 OANDA Europe Limited 1079107210881077107510801089109010881080108810861074107210851072 1074 104010851075108310801080, 108810771075108010891090108810721094108010861085108510991081 10851086108410771088 7.110.087, 11021088108010761080109510771089108210801081 10721076108810771089: Tower 42, Piano 9 bis, 25 Old Broad St, London EC2N 1HQ. 104410771103109010771083110010851086108910901100 10821086108410871072108510801080 1083108010941077108510791080108810861074107210851072 1080 108810771075109110831080108810911077109010891103 10591087108810721074108310771085108010771084 10921080108510721085108910861074108610751086 1085107210761079108610881072. 10831080109410771085107910801103 8470 542574. OANDA Japan Co. Ltd. 8212 108710771088107410991081 10761080108810771082109010861088 10871086 108610871077108810721094108011031084 1089 10921080108510721085108910861074109910841080 1080108510891090108810911084107710851090107210841080 1090108010871072 Kanto locale Bureau finanziaria (Kin-sho), 108810771075. 8470 2137 1095108310771085 1040108910891086109410801072109410801080 1092108010851072108510891086107410991093 109211001102109510771088108910861074, 108810771075. 8470 1571.Kaufman039s Adaptive Moving Average (KAMA) Kaufman039s Adaptive Moving Average (KAMA) Introduzione Sviluppato da Perry Kaufman, Kaufman039s Adaptive Moving Average (KAMA) è una media mobile progettata per tenere conto di rumore di mercato o di volatilità. KAMA seguirà da vicino seguire i prezzi quando le oscillazioni dei prezzi sono relativamente piccole e il rumore è basso. KAMA regolerà quando le oscillazioni dei prezzi si allargano e seguire i prezzi da una distanza maggiore. Questo indicatore seguono il trend può essere utilizzato per identificare la tendenza generale, i punti di svolta di tempo e movimenti di prezzo del filtro. Calcolo Ci sono diversi passaggi necessari per il calcolo Kaufman039s Adaptive media mobile. Let039s prima iniziare con le impostazioni consigliate da Perry Kaufman, che sono KAMA (10,2,30). 10 è il numero di periodi di Efficiency Ratio (ER). 2 è il numero di periodi per il più veloce costante EMA. 30 è il numero di periodi di lento costante EMA. Prima di calcolare KAMA, abbiamo bisogno di calcolare l'indice di efficienza (ER) e la levigatura costante (SC). Abbattere la formula in pepite morso dimensioni rende più facile comprendere la metodologia dietro l'indicatore. Si noti che ABS è sinonimo di valore assoluto. Efficiency Ratio (ER) ER è fondamentalmente il cambiamento di prezzo adeguato per la volatilità giornaliera. In termini statistici, il rapporto di efficienza ci dice l'efficienza frattale delle variazioni dei prezzi. ER oscilla tra 1 e 0, ma questi estremi sono l'eccezione, non la norma. ER sarebbe 1 se i prezzi si sono alzati 10 periodi consecutivi o giù per 10 periodi consecutivi. ER sarebbe pari a zero se il prezzo è invariato nel corso dei 10 periodi. Smoothing Constant (SC) La costante di smoothing utilizza il pronto soccorso e due costanti lisciatura sulla base di una media mobile esponenziale. Come avrete notato, la costante Smoothing è utilizzando le costanti di livellamento per una media mobile esponenziale nella sua formula. (2301) è la costante di smoothing per un EMA 30 periodo. La SC più veloce è la costante di smoothing per brevi EMA (2-periodi). La SC più lenta è la costante di smoothing per l'EMA più lento (30 periodi). Si noti che il 2 alla fine è quadrare l'equazione. Con il Rapporto di Efficienza (ER) e Smoothing Constant (SC), siamo ora pronti per calcolare Kaufman039s Adaptive Moving Average (KAMA). Dal momento che abbiamo bisogno di un valore iniziale per avviare il calcolo, la prima KAMA è solo una semplice media mobile. I seguenti calcoli sono basati sulla formula di seguito. Calcolo ExampleChart Le immagini qui sotto mostrano una schermata da un foglio di calcolo Excel utilizzato per calcolare KAMA e il grafico QQQ corrispondente. Utilizzo e segnali Chartists possono utilizzare KAMA come qualsiasi altra tendenza seguente indicatore, come ad esempio una media mobile. Chartists possono cercare croci di prezzo, cambi di direzione e segnali filtrati. In primo luogo, una croce sopra o sotto KAMA indica cambi di direzione dei prezzi. Come con qualsiasi media mobile, un sistema di crossover semplice genererà un sacco di segnali e un sacco di whipsaws. Chartists possono ridurre whipsaws mediante l'applicazione di un prezzo o un filtro tempo per i crossover. Si potrebbe richiedere prezzo di tenere la croce per numero di giorni o richiedere la croce del superano KAMA dalla percentuale impostata. In secondo luogo, chartists possono utilizzare la direzione di KAMA per definire la tendenza generale di un titolo. Questo potrebbe richiedere una regolazione dei parametri per levigare ulteriormente l'indicatore. Chartists possono cambiare il parametro di mezzo, che è la costante EMA più veloce, per lisciare KAMA e cercare i cambi di direzione. La tendenza è verso il basso finché KAMA è in calo e forgiare minimi inferiori. La tendenza è fino a patto che KAMA è in aumento e forgiatura massimi più elevati. L'esempio seguente mostra Kroger KAMA (10,5,30), con un trend rialzista ripida da dicembre a marzo e un meno ripido trend rialzista da maggio ad agosto. E, infine, chartists possono combinare i segnali e le tecniche. Chartists possono utilizzare un KAMA a lungo termine per definire la tendenza più grande e una più breve termine KAMA per i segnali di trading. Ad esempio, KAMA (10,5,30) potrebbe essere utilizzato come filtro tendenza e considerata rialzista quando ci si alza. Una volta rialzista, chartists potrebbero quindi cercare cross rialzisti quando il prezzo si muove sopra KAMA (10,2,30). L'esempio seguente mostra MMM con un aumento a lungo termine KAMA e cross rialzisti nel mese di dicembre, gennaio e febbraio. A lungo termine KAMA abbassato in aprile e ci sono stati cross ribassisti in maggio, giugno e luglio. SharpCharts KAMA può essere trovato come un indicatore di sovrapposizione nel SharpCharts banco di lavoro. Le impostazioni predefinite appariranno automaticamente nella casella del parametro una volta che è stato selezionato e chartists possono modificare questi parametri per soddisfare le loro esigenze di analisi. Il primo parametro è per l'indice di efficienza e chartists dovrebbe astenersi da aumentare questo numero. Invece, chartists possono diminuirlo per aumentare la sensibilità. Chartists cerca di lisciare KAMA per l'analisi delle tendenze a lungo termine in grado di aumentare il parametro di mezzo in modo incrementale. Anche se la differenza è a soli 3, KAMA (10,5,30) è significativamente più liscia KAMA (10,2,30). Ulteriori studi Dal creatore, il libro di seguito offre informazioni dettagliate sugli indicatori, programmi, algoritmi e sistemi, inclusi i dettagli sulle KAMA e di altri sistemi di media mobile. Trading sistemi e metodi Perry KaufmanA pochi mesi fa ho avuto un post sul Momentum Echo (clicca qui per leggere il post). Mi sono imbattuto in un'altra forza relativa (o moto se preferite) di carta che mette alla prova ancora un altro fattore. In carta Seung-Chan Parks, The Moving Average rapporto e Momentum, guarda il rapporto tra a breve termine ea lungo termine media mobile del prezzo al fine di rango titoli con la forza. Questo è diverso dalla maggior parte degli altri letteratura accademica. La maggior parte degli altri studi usano il rendimento semplice point-to-point di prezzo per classificare i titoli. I tecnici hanno usato medie mobili per anni per appianare movimento dei prezzi. Il più delle volte vediamo persone che utilizzano il passaggio di una media mobile come un segnale per la negoziazione. Park usa un metodo differente per i suoi segnali. Invece di guardare semplici croci, paragona il rapporto di una media mobile a un altro. Un magazzino con la media di 50 giorni in movimento significativamente al di sopra (sotto) la media mobile a 200 giorni avrà un alto (basso) Classifica. I titoli con la media di 50 giorni in movimento molto vicino alla media mobile a 200 giorni finiranno in mezzo al gruppo. Nel documento Park è parziale della media mobile 200 giorni come più lungo termine media mobile, e si verifica una varietà di calze a breve termine che vanno da 1 a 50 giorni. Esso dovrebbe venire come nessuna sorpresa che tutti i lavori, infatti, tendono a funzionare meglio di semplici fattori basati prezzo-rendimento. Che non ha ancora venire come una grande sorpresa per noi, ma solo perché ci hanno seguito un fattore simile per diversi anni che utilizza due medie mobili. Ciò che mi ha sempre sorpreso è come bene quel fattore non rispetto ad altri metodi di calcolo nel corso del tempo. Il fattore che abbiamo tracking è il rapporto tra media mobile di una media mobile 65 giorni la media mobile a 150 giorni. Non esattamente lo stesso come ciò che Park testato, ma abbastanza simile. Ho tirato i dati che abbiamo su questo fattore per vedere come si confronta con lo standard a 6 e 12 mesi i fattori prezzo di ritorno. Per questo test, viene utilizzato il decile dei ranghi. I portafogli sono formate mensile e rebalancedreconstituted ogni mese. Tutto viene eseguito sul nostro database, che è un universo molto simile alla SP 500 SP 400. (clicca per ingrandire) I nostri dati mostrano la stessa cosa di test Parks. Utilizzando un rapporto di medie mobili è significativamente migliore rispetto usando solo semplici fattori di prezzo-rendimento. I nostri test mostrano il rapporto media mobile aggiungendo circa 200 bps all'anno, che non è poco E 'anche interessante notare che siamo venuti per l'esatto stessa conclusione utilizzando parametri diversi per la media mobile, e un set di dati completamente diverso. E 'solo per mostrare come robusto il concetto di forza relativa è. Per quei lettori che hanno letto i nostri libri bianchi (disponibili qui e qui) ci si potrebbe chiedere come questo fattore esegue utilizzando il nostro processo di test Monte Carlo. Im non andando a pubblicare tali risultati in questo post, ma vi posso dire questo fattore media mobile è sempre vicino alla parte superiore dei fattori che pista e ha un fatturato molto ragionevole per i ritorni che genera. Utilizzando un rapporto di media mobile è un ottimo modo per classificare i titoli per una strategia di forza relativa. I dati storici mostra che funziona meglio di semplici fattori di prezzo di ritorno nel corso del tempo. E 'anche un fattore molto robusto, perché più formulazioni di lavoro, e funziona su più set di dati. Questo articole è stato pubblicato il Giovedi, mese di agosto 26, 2010 at 13:39 ed è archiviato nella relativa forza di ricerca. È possibile seguire tutte le risposte a questo articolo tramite il RSS 2.0 feed. Puoi lasciare una risposta. oppure trackback dal tuo sito. 9 Responses to Moving Rapporto di media e Momentum Un'altra alternativa basata media mobile a utilizzare lo slancio point-to-point sta prendendo la media mobile di slancio 8230, ad esempio, se si seleziona slancio semplice classifica giornaliera, it8217s molto rumoroso la soluzione principale è stato , 8220don8217t controllare ogni giorno, vale a dire 8221 assegno mensile o trimestrale e rerank e riequilibrare aziende. Tuttavia, è possibile controllare tutti i giorni, e potenzialmente riequilibrare i giorni, con molto meno rumore, se, invece di utilizzare 12 mesi slancio, si utilizza la media mobile di 21 giorni di slancio 252 giorni. Questo è anche equivalente proposito, al rapporto di today8217s media mobile 21 giorni alla media mobile 21 giorni. Il vantaggio di utilizzare la media slancio è che avete più reattività alle variazioni di quantità di moto di te se si controlla l'universo oncemonth o oncequarter. Certamente è molto più gestibile di utilizzare la tecnica MA se si dispone di un universo più piccolo per applicarlo dato che io uso un gruppo di ETF come il mio universo, funziona bene per me. Dato che you8217re lavorare in un universo di 900 titoli e partecipazioni rivelare in un formato fondo, potrebbe non essere applicabile a voi, ma io ho pensato che potrebbe essere interessante. Questo è anche equivalente, BTW, al rapporto di oggi 21 giorni di media mobile alla media mobile a 21 giorni a partire da 252 GIORNI FA 8211 EDIT. John Lewis dice: Monitoriamo anche i fattori che prendono una media mobile di un calcolo di moto o punteggio. Il vecchio technicians8217 trucco di usare un MA per appianare il rumore lavora sulla forza relativa esattamente come avviene sul prezzo grezzo. La frequenza di riequilibrio spesso determina il tipo di modello è possibile utilizzare. Noi eseguire strategie che possono essere riequilibrate solo una volta un quarto, e dobbiamo usare diversi modelli per chi di noi per le strategie guardiamo giornaliera o settimanale. Entrambi i metodi funzionano se si utilizza il fattore corretto, e abbiamo scoperto che haven8217t aumentando la frequenza di riequilibrio automatico aumenta di ritorno. A volte ci vuole lontano dal ritorno. E 'del tutto dipende dal fattore e come implementare (almeno nella mia esperienza). Con gli universi ei parametri I8217ve testati su, non ho notato quello che chiamerei 8220statistically significant8221 miglioramenti in cambio quando si passa dalla rebals mensili a muoversi tecniche media che permettono di (potenzialmente, almeno) rebals quotidiane. Che I8217ve notato è stata per la maggior parte ciò che I8217d chiamata restituisce equivalenti nei dati backtest. Sono particolarmente notato che il numero medio di negoziazione roundtripsyear è solo leggermente superiore al potenziale cambio giornaliero, cioè ci sono alcuni whipsaws, ma solo alcuni. Quello che io personalmente come circa il potenziale per variazioni giornaliere è, se ipoteticamente una delle questioni I8217m in crash e brucia, la tecnica MA sarebbe uscita in modo più rapido (e sostituirlo con un altro di sicurezza). Ovviamente questo accade abbastanza didn8217t nel corso degli estensivi per guidare una differenza significativa nel risultato, ma fornisce una bella pomata alla mia psiche. Suppongo che quando I8217m in pensione e si esegue il mio programma da qualche spiaggia da qualche parte, I8217ll preferiscono solo dover fare il check in mensile, però. That8217s successive. Per ora mentre I8217m sul computer tutti i giorni in ogni caso, potrebbe anche passare le mie scansioni Paul Montgomery dice: 8220Im non andando a pubblicare i risultati in questo post, ma posso dirvi questo fattore media mobile è sempre vicino alla parte superiore dei fattori che TRACK e ha un fatturato molto ragionevole per i ritorni che generates8221 Grande postale 8211 mi piacerebbe vedere di più su questo John post interessante infatti 8211 ho letto un sacco di documenti su questo e ricercando le sue effectiveness8230 L'unica cosa che non riesco a capire è come mai un fondo come ad esempio AQR che propone un'altra forma di slancio investire fa così male. I loro rendimenti theorectical sono circa 13 all'anno, ma il fondo attuale è ancora in meno. Si chiedono se investire in diretta con questa idea del tuo produrrà risultati vicino al amounts8230 testato

No comments:

Post a Comment